Local Filters of B-spline Wavelets
نویسندگان
چکیده
Haar wavelets have been widely used in Biometrics. One advantage of Haar wavelets is the simplicity and the locality of their decomposition and reconstruction filters. However, Haar wavelets are not satisfactory for some applications due to their non-continuous behaviour. Having a particular level of smoothness is important for many applications. B-spline wavelets are capable of being applied to signals and functions of any smoothness. However, the conventional B-spline wavelets results ”non-local” decomposition filters and consequently, they are not efficient as are the Haar wavelets. We present our recently developed local filters of Bspline wavelets. Here, we focus on quadratic case that guarantees once-differentiable smoothness. Practical issues for the efficient implementation are discussed. We show that how the resulting filters can be applied to curves, images and surfaces.
منابع مشابه
Digital filters associated with bivariate box spline wavelets
Battle-Lemarié’s wavelet has a nice generalization in a bivariate setting. This generalization is called bivariate box spline wavelets. The magnitude of the filters associated with the bivariate box spline wavelets is shown to converge to an ideal high-pass filter when the degree of the bivariate box spline functions increases to `. The passing and stopping bands of the ideal filter are depende...
متن کاملSolving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets
In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...
متن کاملMultiresolution for curves and surfaces based on constraining wavelets
We present a novel method for determining local multiresolution filters for a broad range of subdivision schemes. Our approach is based on constraining the wavelet coefficients such that the coefficients at even vertices can be computed from the coefficients of neighboring odd vertices. This constraint leads to an initial set of decomposition filters. To increase the quality of these initial fi...
متن کاملGeneralized biorthogonal Daubechies wavelets
We propose a generalization of the Cohen-Daubechies-Feauveau (CDF) and 9/7 biorthogonal wavelet families. This is done within the framework of non-stationary multiresolution analysis, which involves a sequence of embedded approximation spaces generated by scaling functions that are not necessarily dilates of one another. We consider a dual pair of such multiresolutions, where the scaling functi...
متن کاملPopular Wavelet Families and Filters and Their Use
Glossary 5 Introduction 6 Definition of Wavelets 7 Definition of Filters 8 Multi-Resolution Analysis 9 Wavelet Decomposition and Reconstruction 10 Refinable Functions 11 Compactly Supported Orthonormal Wavelets 12 Parameterization of Orthonormal Wavelets 13 Biorthogonal Wavelets 14 Prewavelets 15 Tight Wavelet Frames 16 Tight Wavelet Frames over Bounded Domain 17 q-Dilated Orthonormal Wavelets ...
متن کامل